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On the Diffraction of X-rays by Face-Centred Cubic Crystals containing Extrinsic 
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A solution is given to that problem of extrinsic faulting in face-centred cubic crystals in which additional 
layers may be inserted with equal probability after layers of original crystal or after previously inserted 
layers. The method employed involves the derivation and solution of an appropriate difference equation. 
The distribution of diffracted intensity differs from that given previously [Sabine, Acta Cryst. (1966), 
21, 882-884], but it does show expected behaviour both for small values of the fault probability and for 
values near unity. 

1. Introduction 

Two distinct models for faulting which have been con- 
sidered in the literature might be classified under the 
heading of extrinsic faults in face-centred cubic crystals, 
and corresponding to these two models for faulting 
there are two problems about the diffraction of X-rays. 
In the first model it is supposed that a layer may be 
inserted after any layer of the original crystal, but that 
an inserted layer cannot follow another inserted layer. 
The probability that any original layer is followed by 
an inserted layer is assumed to be constant throughout 
the crystal, and is denoted here byp. The corresponding 
diffraction problem has been solved by Johnson (1963), 
who used random-walk techniques to evaluate first 
the phase changes and then the diffracted intensity. 
Holloway & Klamkin (1969) (hereafter HK) have 
given another solution after using probability trees to 
set up a difference equation in the probabilities. Though 
the methods used in the two solutions are quite dif- 
ferent, the expressions given for the diffracted intensity 
are identical. For p--+ 0 the crystal tends to the ori- 
ginal f.c.c, crystal, while for p -+ 1 the crystal becomes 
the f.c.c, crystal which is the twin of the original (John- 
son, 1963) - the diffracted intensity shows the expected 
peaks at these two limits. Evidently, these solutions to 
the first problem are quite satisfactory. 

The situation has been less satisfactory for the 
second problem. In this it is supposed that a layer may 
be inserted after any layer of the original crystal, or 
after another inserted layer. The probability that any 
layer is followed by an inserted layer is denoted by p. 
For p small it is expected that the distribution of dif- 
fracted intensity should match that calculated in the 
first problem, for the probability of having two or 
more inserted layers after a given original layer is p2 
which is much less than the probability p ( 1 - p )  of 
having a single inserted layer. For p ~ 1 the structure 
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becomes hexagonal close-packed (Fig. 1) so the dif- 
fracted intensity should show characteristic h.c.p. 
features in this limit. This second problem (which has 
been termed the problem of condensation faults) has 
been considered by Sabine (1966), but the result he 
gives fails to show the expected behaviour at small 
values of the fault probability. Sabine's work has been 
criticised by Johnson (1968) and again by HK. The 
latter gave an indication of how the problem might be 
approached, but until now no satisfactory solution has 
been published. 

The purpose of this paper is to present a detailed 
solution to the second of the problems mentioned 
above. First, a difference equation in the probabilities 
is set up via the methods of HK, and a direct confirma- 
tion is made of its validity. It is shown that the dif- 
ference equation for the first problem generates prob- 
abilities which are correct for the second problem to 
first order in p, while Sabine's difference equation 
generates probabilities which are in error by terms of 
first order in p. The solution of our difference equation 
is straightforward, if tedious. From this solution the 
expression for diffracted intensity is written down, and 
a brief description of its behaviour is given. This 
expression is shown to give the expected behaviour 
both at small values of p, and for p--+ 1. 

2. The difference equation 

The difference equation is derived here following the 
methods of HK, although our notation differs slightly~ 
from theirs. We suppose that the original (or regular) 
stacking sequence is ABCABC.. . ,  and that the prob- 
ability that any layer is followed by an inserted layer 
(not in the regular staaking sequence) is p. At any layer 
which is described by the stacking symbol A we may 
distinguish layers A + and A*: A + denotes a layer 
which, if the regular stacking sequence is followed or 
resumed, is followed by B, while A* denotes a layer 
which, if regular stacking sequence is resumed, is 
followed by C. At layers described by the stacking 
symbols B or C analogous distinctions can be made. 
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Fig. 1 shows probability trees drawn from A + and A* - 
analogous trees can be drawn from B +, B*, C + and C*. 

The expected number of inserted layers after any 
layer of the original crystal is 

p ( 1 - p ) +  2p2(1-p)+ 3p3(1-p) + 4p4(1-p) + . . .  
=p/(1 -p) 

so the fraction of condensed layers in the crystal is 

p/(1 -p )  
[1 +p / (1 -p ) ]  =P"  

A layer will be of type A +, B+ or C + if it is a layer of 
the original crystal or if it is 2nd, 4th, 6 th . . .  in a se- 
quence of inserted layers. It is not difficult to establish 
that the fraction of layers of these types is 

(1 +p2 +p4+...)/(1 +p+p2 + p 3 + . . . ) =  1/(1 + p ) .  

A layer will be of type A*, B*, C* if it is 1st, 3rd, 5 th , . . .  
in a sequence of inserted layers. The fraction of layers 
of these types is p/(1 +p). 

Following HK once again, we suppose that the 
probabilities of occurrence of A +, B +, C +, A*, B,* C* 
in the mth layer are respectively G~, 62, G3, G4, Gs, G6. 
Then we have 

G1 + G2 + G3 + G4 + G5 + G6 ----- 1 (1) 

P g= GI + G,, (2) 

P~+~=pG2+(I-p)Ga+(I-p)Gs+pG6 (3) 

P~+z=pG~ +(I-p)2G 2 +p(l-p)Ga 
+ (I - 2p + 2p2)G4 +p(l -p)Gs +p(l -p)G6 (4) 

P~+3=(1-3p+4p2-2p3)G~ + p ( 2 -  4p + 3p2)G2 
+ p(1 -p2)G3 + 2p( 1 - 2p + p2)G 4 -k- p( 1 -p2) Gs 
+(1 - 3p+4p2-pa)G6. (5) 

Equations (2) to (5) are written from inspection of the 
probability trees. In these equations the symbol P~ 
denotes the probability that the mth layer is in stacking 
position A (whether A + or A*). Equations (1) to (5) 
involve the unknowns in just four combinations: 
( G I - + - G 6 ) ,  ( G 2 + G 4 ) ,  ( G a + G s ) ( G 4 - G 6 ) .  Equations (1) 
to (4) can be solved for these four quantities and the 
results substituted in (5) to give 

A P,.+3 +(1 - 2p)P~+2 +(1 - 2p)PA+~ 
+p(l--3p+3p2)p~=l--p--p2+p 3 (6) 

which is the required difference equation. The proba- 
bilities p B and p c  satisfy precisely analogous diffe- 
rence equations - it is necessary only to replace A by 
B or C in (6). 

The validity of (6) can be examined in a straight- 
forward manner. For instance it can be supposed that 
we have A + on the 0th layer. Then a probability tree 
can be constructed as in the upper part of Fig. 1 (but 
extended beyond the 3rd layer), and the probabilities 
P~,PI 4 . . . .  ,Par,,, can be written from inspection. Given 
P~, P~ and P~, successive applications of (6) should 
generate the probabilities correctly. In Table 1 are 
shown some probabilities obtained by inspection of the 
probability tree, together with probabilities generated 
from (6). It is of interest to compare these probabilities 
with those generated from HK's difference equation 
for the first problem: 
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Fig. 1. Probability trees used in the derivation of the difference 
equation. 

a ( 1 - p ) P g + 3 +  Pro+4+ (1 --p +pZ)PAm+ 2 
+2p(1 A 2 A -P)Pr,,+~+P Pm =1 (7) 

and from Sabine's difference equation 

P~+2+(1 .4 --p)Pm+l +(1--2p)P~= l--p . (8) 

The results indicate that (6) is the correct equation for 
the problem under consideration, that (7) generates 
probabilities which are correct to first order in p, while 
(8) generates probabilities which are in error by terms 
of first order in p. 

The solutions of (6) and its analogues for P~ and p c  
are (see HK) 

A 1 m m m Pm=~+ K~X1 + K2Xz + K3X3 (9) 

P~ = ½+ LIX'~ + L2X'~ + LsX'~ (10) 

pc  = ½ + M1xr~ + M2X'~ + M3X'~ 

where the X's are the roots of 

(11) 

X3+(1-2p)X2+(1-2p)X+p(1-3p+ 3p2)=0. (12) 

These roots are shown in Table 2. Following H K  we 
choose the 0th layer at random, and arbitrarily assign 
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to it the s tacking symbol  A. It  may  be A ÷ [with prob-  
abi l i ty  1/(1 +p)]  or  A* [with p robab i l i ty  p/(1 +p)] .  Then  
the probabi l i t ies  for  m = 0, 1,2, which  are the b o u n d a r y  
condi t ions ,  can be wri t ten f rom inspect ion  of  the trees 
in Fig. 1, af ter  assigning app rop r i a t e  weights to the two 
trees. This  al lows de t e rmina t i on  of  the cons tan ts  
K , L , M  in (9), (10), (11) and  the so lu t ion  o f  the dif- 
ference equa t ion  is comple te .  The  assumed probabi l i -  
ties and  the cons tan t s  are inc luded in Tab le  2. 

3. T h e  i n t e n s i t y  d i s t r ibut ion  

To discuss the in tens i ty  d i s t r ibu t ion  we use the same 
hexagona l  coord ina tes  [hk.l] as HK,  so tha t  we can  
take  over  thei r  results immedia te ly .  Fo r  ( h - k ) = O  
(mod  3) there  are sharp  intensi ty  m a x i m a  when l is an  
even integer.  F o r  (h - k) T! 0(mod 3) we ob ta in  spots 
which  show s t reaking  in a d i rec t ion  no rma l  to the close- 
packed  planes.  Since for  0 < p  < 1 

]Xo[ < 1 v = 1 , 2 , 3  

which  is cond i t i on  (21) in HK,  we can  use the H K  
result  (23) for  the intensi ty,  v/z 

3 K ~ ( 1 - X ~ ) / 2  + V 3 ( L o - M o ) X ,  s inzd  
I =  (13) 

o=~/-' 1 - 2 X o  cos z d + X  2 

where the upper  and  lower  signs co r r e spond  to the 
cases ( h -  k) = l ( m o d  3) and  ( h -  k) =- 2(rood 3) respec- 
tively. Using  first the ' r emarks '  f rom Table  2 to eli- 
mina te  ( L 2 - M 2 ) ,  ( L 3 - M a )  f rom (13), then  subs t i tu t ing  
for  the X's ,  K 's ,  etc., we ob ta in  
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Fig. 2. Intensity profiles resulting from solutions of the first 
problem (broken line) and of the second problem (full line). 
The profiles are drawn for various values of the fault prob- 
ability. 

Tab le  1. S o m e  probabilit ies P ~, given that the Oth layer & A + 

Pg generated Pm a generated Pg generated 
m P~ by inspection by equation (6) by equation (7) by equation (8) 

2 p - -  - -  p 
3 (1 - p )  (1 -- 2V + 2p 2) (1 - p )  (1 -- 2p + 2p 2) - -  (1 - p )  2 
4 p(3 -- 9p + 1 lp 2 - 4p a) p(3 - 9p + 1 lp 2 -- 4p a) p(3 - 7p + 5p 2 -- 2p 3) p(1 - p  +p2) 
5 p(1 --p) ( l+4p- - l lp2+8p  a) p(l --p) ( l+4p- - l lp2+8p  a) p(1--p2+p 3) p(1 --p) (2--p --p 2) 

Tab le  2. Solutions o f  the difference equations (6) 

See equations (9) to (12) in text. 

Roots of (12) 
X~ = - p  X2 = [(3p - 1) + ii/3(1 -p) l /2  

Boundary conditions, given that 0th layer is A 
P0 a = 1 P• = 0 
Pg = 0 Pf  = (1 - p  +p2)/(1 +p) 
pc = 0 pc =p(2-p)/(1 +p) 

Constants in equations (9) to (11) 
K~ =p(1 - p + 4p2) / D 
K2 = ( 2 -  9p + 9p 2 + 2p3)/6D + il/3p(1 - p )  (1 - 2p)/2D 
/(3 is complex conjugate of K2 
Lt = -p(2  - 5p + 5p2)/D 
L2 = - -  (1 -- 9p + 18p 2 -- 8p3)/6D - iV3(1 -- 3p + 4p3)/6D 
L3 is complex conjugate of L2 
Mt =p(1 - 4p +p2)/D 
M2 = - (1 - 9p 2 + 10p3)/6D + il/3(1 - 6p + 9p 2 - 2p3)/6D 
M3 is complex conjugate of 342 
with D = (1. +p) (1 - 4p + 7p 2) 

X~ = [(3p- 1 ) -  il/3(1 -p) l /2  

Pz a = 2p(1 - p  +p2)/(1 +p) 
Pg =p(1 - p )  

c P2 = (1 - 2p + 2p 2 -p~)/(1 +p) 

Remarks 
Kt + Lx + MI =O 
K2+ Lz+ M2=O 
K3+ L3+ M3=O 

3K2 - il/3(L2 - M2) = 0 
3K~ + iV3(L3- M3) = 0 
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I =  3K1(1 - X~)/2 + ]/3(L1- MI)X~ sin zrl 
1-2)(1 cos rcl+XZa 

+ ~:K2 [exp ( + ircl) + X2] 
[exp ( + in l ) -X2]  

[exp (T- ird) + X3] 
+ ~K3 [exp (-T- izrl) - X3] 

3p(1 - p )  
2(1 +p)  (1 -4p  + 7p 2) 

[(1 +p) ( 1 - p + 4 p 2 )  + 2p(1-2p)1/3 sin zrl × 
t 1 +2p cos rcl+p z 

( 2 - 9 p + 9 p Z + 2 p 3 ) - 3 ( 1 - p )  (1 -2p )  cos zr/T-(1-2p) (1-3p)] /3  sin ~rl] 
+ ( 2 - 3 p +  3p2)+(1-3p)  cos rd-T ( 1 - p )  ]/3 sin zrl ] " (14) 

Fig. 2 shows intensity profiles for h - k -  1 (mod 3) and 
for various values of the fault probability p. The figure 
also shows profiles for the case h - k - -  1 (mod 3) given 
by the solution to the first problem 

I -  3p(1 - p )  (1 +p) { (2-cos  zd-T ]/3 sin zr/)/[2(1 _p+pZ) 

+(1 + p - 2 p  2) cos zd-T(1 -p)] /3  sin zrl 

+ p  cos 2rd~p]/3 sin 2rd]}. (15) 

As expected, the profiles given by (14) and (15) are 
almost indistinguishable for p small (say p<0.2) .  On 
the other hand for p nearly unity (say p>0.8) ,  the 
intensity as given by (14) peaks at the h.c.p, position as 
expected. 

4. Discussion 

Sabine (1966) presented a solution to the (second) 
problem in which the diffraction profiles showed un- 
usual features, but that solution has been shown to be 
in error. From the solution presented here it is evident 
that the two models for faulting result in diffraction 
profiles which are practically indistinguishable for 
small or moderate values of the fault probability. 

A more general model for faulting can be conceived 
in which a layer of original crystal is followed by an 
inserted layer with probabilityp, while an inserted layer 
is followed by another inserted layer with probability 
q (not necessarily equal to p). This model reduces to 
the 'first model' above for q = 0 and to the 'second model' 

have to distinguish three types: A of the original 
crystal, inserted A followed on resumption of regular 
sequence by B, and inserted A followed on resumption 
of regular sequence by C. Unfortunately there would 
be nine unknowns GI to G 9 and although the HK 
procedure is clear the difference equation which results 
could have order as high as eight. At present, and 
particularly in view of the similarity of the results for 
q = 0  and q=p, it does not seem worthwhile to carry 
out the longer calculation for the more general model. 

It would be of some interest to derive the intensity 
distribution (14) from some general theory which 
avoids the use of difference equations. Kakinoki (1967) 
has given one general theory, but that theory does not 
seem to be applicable because the Reichweite for the 
(second) problem is not well defined. It is not clear to 
the author whether the intensity distribution can be 
obtained by a straightforward application of Cowley's 
(1976) theory. 

Thanks are due to Dr T. M. Sabine for first drawing 
the author's attention to this problem, and to Dr A. 
Howie for some comments on the manuscript. The 
support of the Science Research Council in providing 
a Senior Visiting Fellowship is gratefully acknowledged. 
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